Distance Formula

d(A,B)=(y2y1)2+(x2x1)2d=(y2y1)2+(x2x1)2\small\fcolorbox{#00BFFF}{white}{$d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}$}


d
d
(x_1, y_1)
(x_2, y_2)
A
A
B
B
Viewer does not support full SVG 1.1


Goal:

Find the distance between two distinct points in a coordinate plane.


Definition:

d = distance or length

A = an endpoint

B = an endpoint


Example:

Find the distance between A(5,2)andB(3,2)A(-5,2)\, and\,B(3,-2)

Steps:

Since we know the following we can label and plug them in.

x1=5x_1=-5

y1=2y_1 = 2

x2=3x_2=3

y2=2y_2=-2


d(A,B)=(y2y1)2+(x2x1)2d(A,B)=\small\sqrt{(\colorbox{red}{$y_2$}-\colorbox{cyan}{$y_1$})^2+(\colorbox{yellow}{$x_2$}-\colorbox{orange}{$x_1$})^2}


d(A,B)=(22)2+(35)2d(A,B)=\sqrt{(-2-2)^2+(3--5)^2}




d(A,B)=(4)2+(8)2d(A,B)=\sqrt{(-4)^2+(8)^2}

d(A,B)=16+64d(A,B)=\sqrt{16+64}

d(A,B)=80\colorbox{aqua}{$d(A,B)=\sqrt{80}$}




By: Ed
Sept. 4, 2020