d=(y2−y1)2+(x2−x1)2\small\fcolorbox{#00BFFF}{white}{$d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}$}
Goal:
Find the distance between two distinct points in a coordinate plane.
Definition:
d = distance or length
A = an endpoint
B = an endpoint
Example:
Find the distance between A(−5,2)andB(3,−2)
Steps:
Since we know the following we can label and plug them in.
x1=−5x_1=-5
y1=2y_1 = 2
x2=3x_2=3
y2=−2
d =(y2−y1)2+(x2−x1)2
=(−2−2)2+(3−−5)2d(A,B)=\sqrt{(-2-2)^2+(3--5)^2}
=(−4)2+(8)2d(A,B)=\sqrt{(-4)^2+(8)^2}
=16+64d(A,B)=\sqrt{16+64}
d(A,B)=80\colorbox{aqua}{$d(A,B)=\sqrt{80}$}